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I. INTRODUCTION

Waveguide discontinuity problems are very common to microwave

engineering. Various approaches for different type of waveguide

transitions have been developed including the conventional lumped

equivalent circuits and field theory techniquesl, 3 . Following the

approach of Clarricoats1 which is a field theory technique led to

more detailed work and numerical applications by Mielke4 . In brief,

this technique involves matching the normal mode expansions in each

waveguide section at the junction between sections. A large matrix N

equation is obtained which is then solved for mode amplitudes.

Transmission coefficients, reflection coefficients, and power flow

are calculated in terms of these amplitudes. Mielke's original work

only allowed an abrupt transitions from one waveguide to another.

Within this junction, two additional restrictions are imposed. One

is that each junction can have only one input and one output waveguide.

Second is that the smaller waveguide must lie entirely within the

boundaries of the larger waveguide. Within this framework, the

*following coupling coafficient calculations have been obtained

analytically and implemented in a computer code:

- on-axis symmetrical modes (circular to circular, circular to

coaxial, and coaxial to coaxial waveguide transitions)

- on-axis and off-axis for all modes (rectangular to rectangular

waveguide transition)

Subsequent work on circular to rectangular waveguide transition case

has been implemented numerically by Palevsky5.

" 0.
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The first part of the work presented is to introduce a tentative

formulation which is able to handle the transition problem of the

type that permits a conducting wall on each side of the junction. -

However, the junction is still restricted to be an abrupt transition

from one waveguide to another. Also each junction is still allowed

to have only one input and one output waveguide. The modal expansion

technique is again applied here1 . This formulation is not yet

implemented and its derivation is described in Chapter II.

The second part of this work is the development of the convergence

criteria. Accurate results depend critically upon judicious choice 1%

of the important modes via symmetry used in each waveguide section.

Ideally, an infinite number of modes should be used. In practice,

truncation errors caused by use of a finite number of modes can be

reduced if these modes are wisely selected. Criteria for such

selections are derived.

The third aspect of this thesis is to implement the evaluations

of the coupling coefficients for the following cases:

- on-axis asymetrical modes (circular to circular, circular to

coaxial, and coaxial to coaxial waveguide transitions) **

- off-axis for all modes (circular to circular, circular to

coaxial, and coaxial to coaxial transitions)

The numerical implementation of the above cases is done following the

technique developed for the circular to rectangular waveguide transition5 .

e. -

,m.* *. #'
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III FORMATION

The transition which has a transverse conducting wall on each

side of the junction is investigated. The coaxial to coaxial tran-

sition as shown in Figure 2-lb which maintains the same characteristic

impedance is a common transition that requires this extended formulation.

A number of different geometries of a two-sided boundary transition

is illustrated in Figure 2-1.

Adopt the definition of expressing the transverse electromagnetic

fields in the expansion of an infinite number of vector mode functions

found in Reference 3. For a junction which has an input guide 1 and

an output guide 2, the fields in both guides are matched at the

junction.

The boundary conditions require that:

in the common cross-sectional area (aperture)

Et (1) - Et (2) (2-1)

Ht (1) - Ht (2) (2-2)

and on the left side of the conducting wall

Et (1) - 0 (2-3)

and on the right side of the conducting wall-I-
Et (2) - 0 (2-4)

I E
3

% % %
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a -Circular to Circular Transition

b - Coaxial to Coaxial Transition

c -Circular to Coaxial Transition

Figure 2-1. Two-Sided Boundary Transitions.
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Two useful pairs of equations may be derived from equations (2-1) and

(2-2) by manipulating either (2-3) or (2-4).

First scalar multiply equations of (2-1) and (2-3) by

N(l)
e (kj, 1),

I

*1N(1) __ ,+N(1) -

Et (1) 11: e (kj, 1) - Et (2) e (k, 1) (2-5)

I I in the aperture

N(1) ,
Et (1) • e (kj, 1) - 0 (2-6)

k -I
I

on the left side of the conducting wall

Where e (ki, 1) are basis vector mode functions in region I and

N(1) is number of modes used in the expansion.

N(2)

Secondly post vector multiply equation (2-2) by (k2 , 2),

k 1
2

N(2) N(2) ,
Ht (1) x , e (k2, 2) - Ht (2) x e (k2 , 2) (2-7)

k - I k I
2 2 in the aperture

Where e (k2 , 2) are basis vector mode functions in region 2 and N(2)

is number of modes used in the expansion.

Integrating (2-5) over the aperture, added to the integration of (2-6)

over the left conducting wall gives: Iiff _0 It N(f N(1)
(1)) e (k1 , 1) ds Et (2) e (k , 1) ds

(J ) k' -I k -I

cs(I) 1 A(1,2) 1 (2-8a)

Integration of (2-7) over the aperture yields:

N(2 NC(2)1
ff[ (t) x e (k 2 , 2) ds H t (2) x e (k2, 2) ds

k I J k' 2

A(1,2) 2 A(1,2) 2 Ito
(2-9a)

5
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The use of the symmetric manipulations leads to the following dual

equations (2-8) and (2-9):I 1h N(1) I 1 .d_ N(1) 1
t(1) Xe (Ici, 1] . d f HILIt (2) x ak (c, 1] .d

k, ,1 I,,, -
A(1,2) I A(1,2) (2-8b)

IN(2) N(2)ffEt (1) 1 e (k2 , 2) ds -JEt (2) (k2 . 2) ds

A(1,2) 2  cs(2) k2  (2-9b)

Where cs(1), cs(2) are cross-sectional area of guides 1 and 2 and

A(1,2) the common cross-sectional area at the junction between guides

I and 2. Since both sets of equations should give the same solutions

in the limit of an infinite number of modes, any linear combination

should also give the same solutions. How these two sets of equations

should be weighted in a linear combination is discussed in detail in

Appendix A. The combined equations (2-8a + 2-8b) and (2-9a + 2-9b)

form the matrix equation which is solved for the forward mode amplitudes

and the backward mode amplitudes. The size of the matrix will increase

as the number of modes per region and the number of regions increase.

To set up the large matrix equation, the coupling terms and the

propagation terms must be calculated. The one-sided boundary tran-

sition formulation contains coupling terms that are integrals of two

modes, one from each side of the junction, over the aperture (Overlap

Integrals). The two-sided boundary transition formulation contains

additional coupling terms that are integrals of two modes, both from

the same waveguide, over the aperture (Cross-Overlap Integrals).

67.m
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Whereas the propagation terms are the same for both transitions. To

Include this type of transition into the existing system of equation

of the one-sided boundary problem, the entries of the matrix structure

as weil as the entries of the known subvectors have to be modified.

The very detailed structure of the matrix equation is given in Appendix

A.

V 
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III. NUMERICAL CONVERGENCE CRITERIA

There are always solutions to the atrix equation. However,

unless sufficient modes in both regions preceding and following any

junction are considered, the solutions will be inaccurate. The

accuracy can be estimated, in principle, by examining the transverse

fields at the junction.

This is done by adding all the transverse fields in region

preceding the junction to obtain the total field and substracting the

summation of all the transverse fields following the junction. The

result will indicate how close the fields in both regions are matched

at the junction. However, this is a cumbersome process. Therefore,

another technique is developed which provides a way of estimating the

accuracy of the solutions.

Figure 3-1 illustrates the longitudinal view of a single junction.

guide J I
guide J+1

K-Plane of junction j

Figure 3-1. Longitudinal View of a Single Junction.

8



The transverse vector mode functions of guides j and J+1 are given

by:

i (kj, J) for guide j

(kj+l, J+l) for guide J+l

The overlap and self-overlap integrals are defined by:

0.1. (kj, kj+j, J) mffW (kj, J) . V (kj+I , J+1) ds (3-1)

A(j, j+l)

S.O.I. (kj, J) - ffi- (kj, J) * i (kj, J) do (3-2)

A(J, J+1)

S.O.I. (kj+ l J) - ff i (kj+l, J+1) (kj+l, J+) do (3-3)

A(J, j+1)

First consider a given single incident mode in larger guide J.

Due to the discontinuity, an infinite number of modes in guide J+1

are excited. This incident mode over the smaller cross section can

be represented at the junction by:

N(J+1) ,
e (kj, J) - lm k' a (kj+l, J+l) . e (kj+1 , J+1) (3-4)

N(J+1) k J+k =I

Where a (kj+l, J+1) is a weighting factor of each excited mode in

guide J+1. Substitution of (3-4) into (3-1) yields:

N(J+I)
0.1. (kj, kj+j, J) him a (kj+l, J+1)

N(J+1) * k' -1
J+1

ffe (kj+l, J+1) e e (kj+l, J+1) ds (3-5)

A(J, j+1)

99%



Application of the orthogonality of the normal mode properties, (3-5)

becomes:

0.1. (kj, kj+l, J) (k-l J+1 ifk~l k (3-6)
0 if kj+ l kj+l

Hence, (3-4) becomes:

N(J+I) J
(kj, J) - lir 0.1. (kj, kj+l, J) . (kji, Jl)

N(J+l) * kj+ - 1 (3-7)

Substitution of (3-7) into (3-2) yields:

S.O.I. (kj, J) - lis E 0.1. (kj, kjl, J)
N(J+1) . kj l I  ( I

ff 6(k/ J+1 ) - _e (kj~+, J+1) ds

A(J, j+1) (3-8)

or,

S.O.I. (kj, J) - lim N .1 . (kj, kj+l, J) 2 (3-9)
N(J+I) "kJ~l a I

Secondly consider a single mode in the smaller guide J+l incident

on the junction, with an infinite number of modes are excited in

guide J. This incident mode over the large cross section can be

represented by:

N(J)
e (kj, J+1) - lim b (kj, J) . e (kj, J) (3-10)

N(J) + - kj=I

Where b (kj, J) is a weighting factor of each reflected mode In guide

J. Substitution of (3-10) into (3-1) yields:

N(j) ff
0.1. (kj, kj+i, J) = lim b (kj, J) • (kj, J) e e (kj, J) de

N(O) * k - I A(J, j+1) (3-11)

10 bb
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or, l

0.1. (kj, kj+l, j) - (3-12)
0 if kj kj

Hence, (3-10) becomes:

N(J)
* (kj+l, J+1) - lim 0.1. (kj, kj+j, J) . e (kj, J) (3-13)

N(J) * kji-l

Substitution of (3-13) into (3-3) yields:

ff (kj+l, J+1). (kj+ I , J+1) ds 
= lm N(J) 0.1. (kj, kj+ 1 , J2N(J) IX 1

cs(J+1) 
N~)*-kilff e (kj, J) e e (kj, J) ds

cs(j) (3-14)

or,

N(J) 2

1 - Ir 1 0.1. (kj, Kj+l, J) (3-15)
N(J) -kjml

Equations (3-9) and (3-15) are indicators for the completeness

of the total representation of an infinite number of modes accountable

for both transverse electromagnetic fields in guide j and J+1.

For the first case:

N(j+1) 2O I " (kj , kj+ i, J ) 2

k 1
0< (1. 0

S.O.I. (kj, j) (3-9)

For the second case:

0 <( j {O.I. (kj, kj+l, J)2 < 1 . 0 (3-15)
-- kj l -- 1

1- %m-



Therefore the convergence can be verified by including a sufficient

number of high order modes in both regions preceding and folloving

the junction until the calculated value of equations (3-9) and (3-15)

reaches roughly 95% or higher.

The knowledge of the field patterns of different modes for various

geometries is helpful in choosing the correct modes for convergence.

The number of modes required for convergence varies depending on the

ratio of the cross-sectional areas of the two guides, the amount of

offset, and the similarity of geometry. For example, two rectangular

guides of only slightly different dimensions will require only a few

modes to obtain good convergence. However, a rectangular to circular

junction with offset axes and a large difference in cross-sectional

area will take many modes to achieve good convergence.

12
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IV. NUMERICAL EVALUATION OF OVERLAP AND SELF-OVERLAP INTEGRALS
FOR CIRCULAR AND COAXIAL GEOMETRIES

For a one-sided boundary transition, the closed form solutions

of the overlap and self-overlap integrals for the symmetrical modes

on-axis transition are available in Reference 4, whereas for the

asymmetrical modes on-axis and for all the modes off-axis transition

have not yet been obtained analytically. Therefore, they must be

evaluated numerically. The overlap and self-overlap integrals for

the asymmetrical modes on-axis transition which are dependent only on

the radial coordinate are evaluated in one dimension, while the over-

lap and self-overlap integrals for all the modes off-axis transition

are evaluated in two dimensions.

The IMSL 6 routines DCADRE and DBLIN are used for one and two

dimension integrations respectively. DCADRE is a routine of one

dimension numerical integration of a function using cautious adaptive

Romberg extrapolation; where DBLIN is a two dimensional version of

DCADRE applying the same numerical approach. The routines require as

inputs the limits of integration and the value of the integrand as a

function of position. The remainder of this chapter describes how

these two items are calculated.

Since the radial dependent part of the mode vector functions are

expressed in terms of Bessel functions, an explicit evaluation of the

functions in the integrands is computationally expensive. Therefore,

a spline routine is used to fit the radial dependent part of the mode

vector functions, and spline interpolation is used to evaluate it in

the integrand. The IMSL 6 routines ICSICU and ICSEVU are used for the

fitting and interpolation. Eight steps (radial increment) per wave-

length plus four steps at each end point are used in the spline fit

to guarantee a smooth interpolation.

13
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The center of the input guide is adopted as a reference frame

for the evaluation of the Integral.

A. Overlap Integral of an On-Axis Transition

The following derivation is valid for the on-axis circular/

coaxial transitions. The transitions for various geometries are

shown in Figure 4-1.

The overlap integral is given by:

0.1. (kj, kj+I , J) -fiF (kj, J) . F (kj+l, J+1) ds (4-1)

A(J, J+l)

Substituting the mode functions listed in Appendix C into the above

integral, it yields:

0.1I. (kj, kJ+l, J) - flr(kj, J. r) .E r (kj+l , J+1, r) . Pr (kj, kj+l t)

A(J, J+1) (4-2)

Where Er (kj, J, r), Er (kj+l, J+1, r) are radial dependent parts of

the radial electric fields, and E, (kj, J, r), E% (kj+l, J+1, r) are

radial dependent parts of the azimuthal electric fields. Since the

integral of the product of polarization terms for radial electric

fields is the same as the integral of the product of polarization

terms for azimuthal electric fields, the integral is represented by

P (kj, kj+j, *).

Upon factoring the r and * components, (4-2) becomes:

0. . (kj, kj+1, j) l[Er (kj, J, r) . Er (kj+l, J+1, r) +

E (kj, J, r) . E (kj+I J+1, r) . r

ip (kj, kj+j, (4-.3)

14
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guide j

a -Circular -Circular.

guide j

b-Circular-Coaxial.

guide j guide J+l

10, z 77, , ,

c-Coaxial -Coaxial.

Figure 4-1. One-Sided Boundary On-Axis Transition.
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The integral P (kj, kj+j, ) is evaluated for different modes coupling

and the results are listed in Table 4-1. Obviously, the polarization

factors for mode couplings of the different azimuthal mode number are

equal to zero. The remaining task is to numerically integrate the

radial part of integrand. The limits for the radial integral are

simply the extreme boundaries of the common cross-sectional area at

the junction.

Table 4-1. Polarization Factors for Various Mode Coupling of the
Same Azimuthal Mode Number m

Mode Coupling

Polarization TE - TE TE - TM TM - TE TM - TM

Parallel -

Parallel +W cos (m.AO) -w sin (m.49) +w sin (m.Ae) +w cos (m.LA).

Parallel -

Perpendicular -w sin (m.AO) -w cos (m.0) + w cos (m.A9) -w sin (m.A8)

Perpendicular -

Parallel +x sin (m.Ae) +w cos (m.A9) -w cos (m.AS) +w sin (m.Ae)

Perpendicular -

Perpendicular + W cos (m.AB) -w sin (m.A) + w sin (m.AS) + w cos (m.Le)

48 is an angular rotation of the secondary axes relative to the main

frame axes. :k1

B. Overlap Integral of an Off-Axis Transition

The off-axis transition involves the integration of a

function of two variables. The integration is always performed in "

the cartesian coordinate system of the first region J. The relation-

ship between the two coordinate systems is illustrated in Figure 4-2.

Ax, Ay, and A6 are the offset of the guide J+I relative to the guide

J, and 4 is applied after Ax and Ay.

16 " .'"
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Figure 4-2. Cross Section View of the Two Coordinate Systems.
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The vector mode functions in guides j and J+l can be written in terms

of their cylindrical coordinates as:

T (kj. J) - Er (kj. J, r) . p (kj. J, ,) . r o +

9 (kj, J. r) . q (kj, J, 0 0
(4-4)

(kj+ I , J+1) - Er' (kj+1 , J+1, r') . p (kj + l, J+1, #') . r 0 +

Ev, (kj+l, J+l, r') .q (kj+l, J+1, 4') 0

Where rop wo are unit vectors along r and * directions; and ro, 4o are

unit vectors along r' and *' directions. The expressions p (kj, J, 40),

q (kj, J, *) and p (kj+j, J+1, '), q (kj+l, J+l, *g) are polarization

terms of guides J and J+1 resqectively.

Using the following coordinate transformation,

x - r . coo 4 - 4 . sin 4

y - r . sin4' - . cos 4 (4-5)

the transverse fields of guide J evaluated at a local point A are

given in the cartesian coordinate system (reference fram) as:

Ex (kj, J) - (Er (kj, J, r) . p (kj, J, *)I . cos 4 -

A A

{E , (kj, J., r) . q (kj, J, ,)j . sin , 'A

IA
(4-6)

.Y (kj, J) - Er (kj . , r) . p (k, J3, *) . sin ,A +

IA*
fE~ (kj, J., r) . q (kj J3. *)I IA COSn 'A

#18.
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Where at point A, rA and JA are given by:

42 2-
rA +XA + YA

(4-7)

- I YA
A =tan

XA

At the same point A, the coordinate transformation from the second guide

to the first guide is given by:

xl - XA  - Ax

Yl - YA - AY

2 2
r' M 4X + Yl

'2 '2 (44)
XA + YA

-1yl
1 tan- Xl

tan-I YA

XA

Applying the coordinate transformation of (4-5), the transverse fields

of guide J+l expressed in terms of the reference coordinate system are:

Ex (kj+l, J+l) - IE r ' (kj+l, J+l, r') . p (kj+l , J+l, *')I . cos I-

E, (kj+ I . J+l, r') • q (k j+l , j+l, 0')1I . sin 'P

(4-9)

EY (kJ+l, J+1) I "Er' (kj+l, J+ r') . p (k+ 1  J+1 '') A sin 'l +

A A
{E , (kj+l, J+I, r' q (kj+l ,  J+I, kb ) [I " Cos Il'-'-...

A

19
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Equation (4-1) becomes:

0.1. (kj. kj~i. J) -nifffEx (kj, J1) - Ex (kj+l, J+l) + Ey (kj, J)

A(J, j+i)

Ey (kj+l, J+1)j dx dy (4-10)

The limits of the integration of the above integral are

derived below for various transitions and geometries.

Bi. Circular to Circular Transistion

Figure 4-3 illustrates the cross section view of the

junction.

Y

A4

moo

Area of
Integrat ion

2
8j

Figure 4-3. Cross Section View of Circular to Circular Transition.
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The lower and upper limits of the horizontal end points are found to

be:

Xlower - - aj+1 + Ax

Xupper - + aj+l + Ax (4-11)

While the limits of the vertical end points are given by:

2 2
Ylower(X) = Ay - aj+l - (x - Ax) (4-12)

22
Yupper(X) - Ay + aj+ l - (x - Ax)

B2. Coaxial to Coaxial Transition

The cross section view of the junction is depicted in

Figure 4-4. The limits of the horizontal end points are:

x -ower ' - aj+ l + Ax

xupper - + aj+ l + Ax (4-13)

The common cross-sectional area is exactly the area bounded by the

inner and the outer walls of guide J+I. For simplicity, the annular

aperture is divided into two regions of integration. Figure 4-5

shows the top half annular ring, where the dashed line indicates the

upper bound and the solid line indicates the lower bound of the

region of integration. Xy

4
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Figure 4-4. Cross Section View of Coaxial to Coaxial Transition. ___
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S--Upper Bound

//r 
Region of Integration

/

_ Ay , I

0 4x x X

Lower Bound

Figure 4-5. Top Half Annular Aperture.

For the top half:

Yoex) Ay 
for ix - AxI bj+ I l

A y + bj+ I  (x - Ax) for Ix - Axj < bj+ I  'l

(4-14) .

Yupper(X) A y + aj+ 1  (x - A X)

The bottom half annular aperture is illustrated in igure 4-6.

23 
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Upper Bound

o. I 

Region of
Integration

tp.
Lower I
Bound IJA-

Figure 4-6. Bottom Half Annular Aperture.

For the bottom half:

2 2

Ylover(x) ' - (J+l 4(x 4x)

Ay for Ix - Axj > bj+l , {:

Y u p p e r ( X ) = AY f o r x - x <

~Ay - bj I - (x - fix) for lx - fixi < bj+I___
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B3. Circular to Coaxial Transition

Since the area of integration is bounded by the inner and

outer walls of coaxial guide, the limits for both horizontal and

vertical end points are the same as the previous case. The same

techniques are used to numerically evaluate the self-overlap integrals.

V
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V. EXPERIMENTAL VERIFICATION

The computer code developed for ay mme trical modes of the on-

axis and the off-axis transitions has been tested with two separate

configurations. The two dimension numerical integration code was

tested by verifying the measured return loss (reflection) of an

off-axis transition. The one dimension numerical integration code

was tested by comparing the experimental results of the return loss

of a centered circular aperture of finite tbickness (obtained from

Reference 3) to the numerical results.

The ratio of the cross-sectional areas of the two guides at the

junction determines the preliminary guess of the ratio of the number

of modes considered in each guide at that junction. Mode selection

for limiting the choices of modes in the expansion to those which

strongly affect the wave solution was done by observing the strength

of the coupling between each higher order mode and the dominant mode.

The convergence criteria was satisfied in all cases. Violation of

this criteria yielded inaccurate results.

A. Three Regions Off-Axis Circular to Circular Transition

An illustration of the three regions transition is depicted

in Figure 5-1. Two units of the transition were fabricated. The

dimensions for each unit are listed in Table 5-1. Notice that the

only difference between the two units is that the length of the middle

region which is of 11.0 -m for unit A, and 15.0 =for unit B.

A block diagram of the experimental arrangements for the

reflection measurement is illustrated in Figure 5-2. The equipment

used for the setup is listed in Table 5-2. Calibration for 100%

reflection was done by placing the shorting plate at the output of

26V
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Figure 5-1. Three Regions Off-Axis Circular to Circular Transition.
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Table 5-1.
Dimensions List of Units A and B

Unit

Dimensions (mm) A B ,

dl 15.90 15.90

X1 30.28 30.28

d2  24.0 24.0 J

Z2 11.0 15.0

d3  15.90 15.90

Z3 30.28 30.28

Ax 4.064 4.064

Table 5-2. Equipment List for Reflection Measurement

(1) HP 8690B Sweep Oscillator

(1) Wiltron Model 560A Scalar Network Analyzer

(1) HP 7035B X-Y Recorder

(2) HP R422A Crystal Detector

(1) HP Model R532A Wavemeter

(2) HP Model R752C 10 dB Directional Coupler Ile

(1) TRG Model 340-634 Mode Filter

(1) TEl 0 to TEoI Mode Converter

(1) Shorting Plate

29 .%,.% .N
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the mode filter. Since a high quality matched load was not available,

the reflection measurement was performed by leaving the output end

of the transition open to air. This was treated as an 18 dB of

return loss in the code since the average measured return loss of the

untermina~ed transition was approximately 18 dB across the entire 4

frequency band.

The first calculated return losses which are obtained

with no input reflections considered are not in good agreement with

the measured results. They are shown in Figure 5-3 for Unit A, and

in Figure 5-4 for Unit B. We theorized that this might be due to the

mode filter not absorbing higher order reflected modes excited at the

junction between the mode filter and mode converter. To take this

into account, the overall length of the first region preceding the

transition was adjusted and an input reflection of 50% was added in

the computer code after a number of runs. The results of the measured

and the calculated return losses of the two units are shown in Figures

5-5 and 5-b respectively. The calculated curves for both units

follow the measured curves closely across the frequency band. At the

lowest end of the band which is near the cutoff frequency of the

dominant mode (TEII mode), the calculated return loss is higher than

the measured return loss for Unit A. The ripples observed across the

midband for Unit A and uniformly across the entire band for Unit B ~'

are probably caused by the imperfection of the mode filter.

B. Centered Circular Aperture of Finite Thickness in Circular
Guide

A small centered circular aperture in a transverse metallic

plate of finite thickness (TEII mode in circular guide) in circular

30
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guide may be interpreted as a shunt inductance3 . The cross sectional

view, the side view, and the equivalent circuit are illustrated in

Figure 5-7. At the reference plane T for a centered circular aperture,

the normalized inductive susceptance is given by

B (2R)3 2-3441 (5-1)

YO 4R 8.40 2

where

H 6 (5-2)

/ 211/2 (5-3

the reflection coefficient can be expressed in term of B as:

1 (270
II B

1_+(~2' 1/2 (5-4)

and the return loss in dB is,

return loss - -20 loglo (p) (5-5)

Measurements of the return loss taken at A -3.20 cm in a circular

guide of _L5 in. diameter and the centered aperture metallic plate of
16

in. thickness with various sizes of diameter of the aperture are
32

shown in Figure 5.5-3 in Reference 3, Section 5.5 page 243 to 246 in

term of B In the computer code, the circular aperture of finite
Yo

thickness is modeled as a circular guide with smaller diameter than

the main guide, and its length is the thickness of the aperture.

This is a three regions on-axis circular to circular transition. The

35
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diameter of 23.812 -m and the length of 100.0 -m are the dimensions

of the first and the last regions. The length of the middle region

is 0.794 mm, and the diameter varies from 6.35 m to 23.019 sm. The

model of the transition is depicted in Figure 5-8. The theoretical

and the experimental results extrapolated from the graphs (Figure

5.5-3) in Reference 3 are compared to the numerical results and

listed in Table 5-3.

Disregarding the results at the point size aperture and at the

limit of the size of the aperture approaching the size of the main

guide, the experimental and the numerical results agree very well

within the average of +2.5 dB and -0.04 dB. Where at the point size

aperture, it is seen that the numerical result is about 0.009 dB less

than the experimental result. The probable cause is an insufficient

number of higher order modes in the modal expansion. It can be

explained that a point size aperture which can be interpreted as a

Dirac delta function has a spatial Fourier representation of an

infinite sum of harmonic components where the modal expansion technique

starts to break down. Likewise, at the limit of the size of the

aperture approaching the size of the guide, the numerical result is

roughly 11 dB higher than the experimental result. It suggested that

for this low scale of VSWR's reading, the measured data obtained from

Reference 3 was inaccurate. This is perhaps due to the insensitivity

of the equipment available at that time. Also 36 dB and 47 dB are

equivalent to 1.6% and 0.45% reflectfon coefficient respectively.

This error is less than 1.2% in absolute terms.

%*
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Table 5-3. Return Loss of a Circular Aperature in a Circular

Guide of 15/16 in. Diameter

Return Loss (dB)

16 d (in) Theoretical Experimental Numerical Ratio in dB

4 0.0117 0.0141 0.0049 - 0.0092

5 0.0506 0.0180 0.0260 + 0.0080

6 0. 1837 0. 1097 0.1I067 - 0.0030

7 0.6189 0.4299 0.3644 - 0.0655

8 2.0437 1.1682 1.0820 - 0.0862

9 6.6540 2.8036 2.7454 - 0.0582

10 5.5145 5.8259 + 0.3114

11 9.6205 10.0786 + 0.4581

12 14.6900 15.5396 + 0.8496

13 22.2399 22.7566 + 0.5167

14 28.6419 33.3532 + 4.7113

14.5 35.9187 46.9358 +11.0171

0 Numerical

Note that the ratio in dB is defined as -20 logl0
PExperimental
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VI. CONCLUSION

The modal expansion technique was found to be capable of handling

any system of uniform waveguides interconnected by abrupt junctions.

The computer codes developed for the asymmetrical modes on-axis

transition and all modes off-axis transition have been tested and

verified through two separate experimental verifications. The results

obtained are satisfactory. Also, the numerical convergence criteria

has been tested. Violation of the criteria has been shown of giving

inaccurate solutions. Formulation of the two-sided boundary transition

has been derived. The implementation of this formulation requires

modification of the structure of the matrix equation of the existing

code. To expand the capability and the versatility of the code,

future work should also include the implementation of ridged vaveguide,

dielectric loaded waveguide and mIliport junctions.
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Appendix A: Derivation of the Matrix Equation

A very detailed derivation of matrix equations of a two-sided

boundary junction is presented in this appendix. This generalized

transition has conducting boundary on both sides of the junction.

The transition discussed in Reference 4 was restricted to only one

side of having a conducting wall.

A single junction of two-sided boundary is illustrated in Figure

A-i.

Plane of junction j

I guide J+l

guide j Right Side Conducting Wall

Left Side Conducting Wall--

,'
' I,

Figure A-i. Longitudinal View of a Two-Sided Boundary Off-Axis ..%

Transition.
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The guide j represents the input guide and the guide J+I is the output

guide. The junction is viewed as one transition of possibly many

transitions preceding the guide .1 and following the guide J+1. In

general. one source term per mode is allowed anywhere along the length

of each section. Figure A-2 shows the forward going wave, the backward

going wave, and the source term of a single region J.

Loop for Exciting Source

B F
S S

B + B .... B

F~ F' +F'

SS

Figure A-2. A Single Region j Showing the Forward Going Wave,
the Backward Going Wave, and the Source.
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The forward mode amplitude, F, and the backward mode amplitude, B',

are the response of this cavity to the defined source terms F. and

Bs. These terms F and B' are the solutions to the matrix equation

discussed in Chapter II.

The fields at any location along any waveguide region can be

expressed in terms of the sum of orthogonal functions weighed by

their respective mode amplitudes and propagation terms.

For a single junction as shown in Figure A-1, the total transverse

electromagnetic fields are given,

At the input plane of guide J+l:

N(j+1)

Et Qj+13 k ( F (kj+ 1 , J+I) + B (kj+ 1 , J+1) + Bs (kj~1 , i+i)}I

e (kj+l, J+l) (A-1)

Ht (J+l) I_ Z(k J+_ (F (kj+l, J+1) - B (kj+l, J+1) -

B (k +h (kj+ 1 J+l) (A-2)

At the output plane of guide j:

N(j)

t (J) k ( F' (kj~i) + B' (kj~j) + F. (kJi)J e (kj1i) (A-3)

N(J) h (kj) ,
Ht (J = ,J) F' (kj,j) - B' (kj,j) + F s (kj,j) -..

Z(ki-)
kI (A-4)

Where Kj, Kj+j are mode indicies for an arbitrary set of N(J), N(J+1)

mod es. -
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At the junction, the transverse fields of the two regions must

be matched at various areas. Let cs(j) and cs(j+l) be the cross-

sectional area of regions j and J+l respectively. And A(J, J+1) is

the common cross-sectional area at the junction j between regions j

and J+1. In the common cross-sectional area:

t (j ) I Et (j+1) (A-5)

Ht (j) I Ht (j+l) (A-6)

On the left side of the conducting wall:

Et (j) M 0 (A-7)

On the right side of the conducting wall:

Et (+1) - 0 (A-8)

Two possible pairs of equations may be derived from equations

(A-5) and (A-6) by using either (A-7) or (A-8). To cast the equations

in a more useful form, the following manipulations are used. First--

consider the use of (A-7). Scalar vector multiplication of equations

N(j) %

(A-5) and (A-7) by e (kj, J) yields:

kj I

N(j) N(j)
E t (Q) " E e (kj,J) ,,E t (J+I) " e (kJ,J) (A-9) ---- :

k =I kc'- I rtw. e

(in the aperture)

Et (J) " e (k ,j) = 0 (A-10)

k I

(on the left conducting wall)
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N(j+1) ,

Post vector multiplication of equation (A-6) by I T (kj+ I , J+l)

J+

yields:

N(J+1) N(J+I)

Ht (J) x I I e (kj+l , J+)- Ht (J+ 1) x e (kj +I) (A-Il)

kj+ I  k;+ I = I

(in the aperture)

The integration of equation (A-9) over the common cross-sectional area,

added to the integration of equation (A-10) over the left conducting

wall gives:

O) N(j)

Et (J) - e (kj,j) ds t (+) T e (kj,J) ds
c80) k? 1 A(j, j+l) k? I (A-12)

The integration of equation (A-i) over the common cross-sectional

area yields:

N(J+I ) N(J+I ' >
ff [H( ) x I e (kj+ 1 , J+i ] ds = ff[Ht (J+l) x I
A(J, j+l) k;+'- I A(J, j+1) k' l rI

e (kj+j, J+] "s (A-13)

Substituting (A-I), (A-2), (A-3), and (A-4) into (A-12) and (A-13)

gives:

N(J) N(J)

S F' (kj, J) + B' (kj~i) + F8 (kjui)j
k- I k;- Ij j'

Jfe (kj,J) e (kjj) ds -

cs(j)

N(J) N(J+I)

(F (kj+ 1 , J+1) + B (kj+1 , J+I) + Bs (kj+, J+)"
k"" I kj+im 1

.e (kj,J) e (k +1 ., J+) ds (A-12)

A(J, J+1)
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I F (kj~i) - B' (k~jj) + F. (kji))

k. j k~ (kj~i)

ff [_h (kj ,i) x e (kj+ 1. J+1)] diS
AQj, J+l)

N(J+1) N(J+l)

k J1 k -+ .1 Z (kj+l, J+1)

(F (kj+i, J+1) - B (kj1+1, J+)- Bs (kj+1,,J1

Jf [I ( j+ i +) x e(k 'P +1  )] d'a
AQ, (+l 1  (A-1 3)

Applying the orthogonality conditions of the eigen modes,

Jf[h (ki e (ki+ 1 . J+1)1 da. ff ~ ( J e (kj+1 , J+1)ds

J) x e(kW+1A(J, J~l j(Jl J

AC.J A(J, J+1)

e (kj+l, J+1) ds

And using the definition for the overlap and cross-overlap integrals

found in Table A-1, (A-12) and (A-13) become:

N(J)

I F' (kj,ji + B' (kj,ji + FS (kj~i)~ I

NQj) N(J+1)

I IF (kj+l, .J+1) + B (kji J+1) +

kj- I kj+iin I

BS (kj+l, J+i)I 0.1. (kj, kj+l 1i) (A-12a)
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N(J) N(J+I) I

Iz .. (j kjlj (F (kjti) - 3 (kj~j) +Fs (kjji))
ki .1k J)

N(J+l) N(J+I)

, C.O.I. (kj+l, kj+l, J) IF (kJ+l, J+1) - B (k j+ ) -

k1+l .I kj+ 1 Z (kj+ , J+L)

Bs (kj+l, J+1)I (A-13a)

Second consider the use of (A-8). Using completely the symmetric

manipulations, the following dual to equations (A-12a) and (A-13a)

are obtained.

N(J) N(J)
j) 7j C.O.I. (kj, kj FJ) F (kj,J) -B (kj, J) + Fs (kjJ) =

k I k =1 Z (k 5 k)

N(J) N(J+I)

I 1 0.1. (kj, kj+l , J) F (kj+ l , J+1) - B (kj+l, J+1) -

kj= I k + I Z (kj+l, J+l)

Bs (kj+l, J+1) (A-12b)

N(J) N(J+I)

F (kj,j) + B (kj,j) + Fs (kj,j) 0.1. (kj, kj+, J)

k in 1 kj+1 I

N(J+1)

kj+I .  I s.(F (kj+l, J+1) + B (k 1..j, J+1) + BS (kj~l, i+i) (A-13b)

k -J+1

Both pair of the equations (A-12a), (A-13a), and (A-12b), (A-13b) can

be written in matrix form as:

mo 3a (A-14)

Where a- a or b
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The matrix Ma  vectors x and b are shown in Figure A-3. Where

the subatrices and subvectors are shown in Figures A-4 through A-16.

For the case of single, two, and J Junctions, the structures of the

matrix equations are shown in Figures A-17 through A-19.

Both these sets of equations should have the same solution in

the limit of an infinite number of modes. The similarity of these

equations to the single sided boundary equations derived in Reference

4 is demonstrated. First examine the equations (A-12a) and (A-13a)

in the limit of the area of the right wall going to zero.

Since,

C'-'
limit e (kj+1 , J+l) " e (k]+l, J+I) ds -

area of right wall 0
A(j, J+)

fe (kj+j, J+I) " e (kj+ 1 , J+1) ds -

cs(J+1)

I if kj.1  kj+i
( (A-15)

U if kj+l # kj+l

Then, equations (A-12a) and (A-13a) become a pair of equations 2
derived for larger-to-smaller transition defined in Reference 4.

Similarly, it can be shown that in the limit of the area of the left

wall going to zero, the equations (A-12b) and (A-13b) are equivalent

to another pair of equations derived for smaller-to-larger transition

in Reference 4.

Since both sets of equations should yield the same result, any

linear combination should also yield the same result. It is expected

that the solutions to the equations (A-12a) and (A-13a) should converge
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(ai a or b)

Equation (A12 a) in Matrix Form:

Xj+l

Equation (A13 ci) in Matrix Form:

x Jl
M1 1  o - MJ 1, +1 Xi ] 1

Figure A-3. Equations (A12 ci) and (A13 a) in Matrix Form.
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2N(j)

kj Cf (kj~i) +1

N (J)

Figure A-4. Equation (Al2a).
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2N(J+1)

kJ +1 G Cf (kj+1 . J+1)

0 0

Figure A-14. Equation (Al3b).
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F (k~i )

Xi B' (kiti)

2N(j)

F (k ,J+I l+)

x J+1

Li~i] B' (k1t1 , J+lL)

2N (j + )

Figure A-16. Solution Subvectors.
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AM Im

faster to the correct solutions as the number of modes per region is

increased for junctions that have most of the conducting wall on the

left aide. Similarly one would expect the solutions to equations

(A-12b) and (A-13b) to converge more rapidly to the right answers for

junctions with most of the conducting wall on the right side of the

boundary. Therefore, it would seem reasonable to make a linear

combination of equations (A-12a), (A-13a) and (A-12b), (A-13b) where

each term is weighted by the relative area of the conducting wall on

each side.

Thus,

* Ma - 9a

(A-16)
wr * Mb X - Wr * ib

Where wl and wr are defined by:

area of left wall

area of left wall + area of right wall

(A-17)

area of right wall

area of left wall + area of right wall

After combining, it yields:

wt* Ma + wr * Mb) wt * 1a + w r *b (A-18)

Where the submatrices and subvectors of (A-18) are shown in Figures

A-20 through A-26 for a single junction.

The backward mode reflection coefficient for the first region 6

that generates a forward going wave in the first region (not a source

term) is normally defined for a given problem. Similarly, the forward

mode reflection coefficient for the last region that generates a

backward going wave in that last section is also a known quantity.
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F (1,1) F (1,2)
F (2,1) F (2,2)
F (3,1) F (3,2)

B' (1,1) B' (1.2)

B' (2,1) B' (2,2)
B' (3,1) B' (3,2)

I I
I I

I 'I

B' (N(),1) B' (N(2)2)

2NI

Figure A-26. Solution Subvectors.
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This is equivalent to defining the input and output termination of

the problem. Therefore, the structure of the matrix equation for J

Junctions 0J+1 regions) Is modified as shown In Figure A-27; where

the modified submatrices and solution subvectors are shown in Figures

A-28 through A-32.
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Appendix B: Derivation of the Self-Overlap Integrals for Symmetrical

Wodes of Circular and Coaxial Geometries On-Axi Transition

The criteria for the convergence check established in Chapter III

requires a knowledge of the values of the self-overlap integrals of

every mode accounted for at the Junction. The area of integration is

always the common cross-sectional aperture. The self-overlap integral

for any mode in the smaller guide is trivially unity. Therefore, only

the self-overlap integral for a mode in the larger guide over the

common aperture is derived.

The S.O.l. for any mode kj in the larger cross section guide j

is defined by

S.O.I. (kj1J) - (ks, J) (kj, J) ds (B-1)

A(J,J+I)

The closed form solutions of the self-overlap integrals for the

symmetrical (m-O) modes on-axis transition are derived below for

various waveguide geometries.

B.I. Circular to Circular Transition

The longitudinal view of the transition is depicted in

Figure B-1. From the Appendix C, the TE mode vector function in

guide j with kj representing m - 0 and arbitrary n is given by:

r
-T E I7 Jo (Xon) " ")

• (kj,J) =_/_ _, . r o  (B-2)
aj . Jo (Xo n )

I 9

Where n 1 1, 2, 3, ... and xon is the nth zero of Jo
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Guide J+

Figure B-1. Longitudinal View of Circular to Circular Transition.
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Substitution of (B-2) into (B-1) yields:

2w +I. Xo *r 2
S.O.I. (kj.J) Jo rdr d* (1-3)

0f 0f aj JOZ

Application of the derivative formula of Bessel function:

I

Jo (x) = - Jl (x)

And with the use of the integrals of Bessel functions formula (4) on

page 255 in Reference 2, (B-3) becomes

2 1 / aj+i\ a ~ j+i\ ( a)
5.0.1. (ajl J~~ko... n8 2 \xonla

( kji 
2 ( x o n

o (B-4)

For TM mode with kj representing m-0 and arbitrary n, the vector mode

function is:

-TM J~o (xon * a)e (kj,j) - -. •ro  (B-5)
w aj •Jl (Xon)

Where Xon is the nth zero of Jo

Substitution of (B-5) into (B-I) gives:

2% faj+1 ( T- J(on( )I2

S.O.L. (kj,J) =f Ij *I (o • r dr d' (B-6)

0 0

Evaluating the integration yields:

aj+1) J Xo, S-+-)- Jo (xon a ). 2 (Xo afS.O.I. (kj,j)- 2(on
(a j2 (x0~

1 on (B-7)
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B.2. Coaxial to Coaxial Transition

The type of transition (one-sided boundary) as shown in

Figure B-2 is valid for the derivations below. For the case of kj

representing m-O and arbitrary n, the TE mode vector function is:

NO (xo,) - N (x

xo' bo n o'(xn o

Substituting (1-8) into (B-1) and collecting terms yields:

seo 7 - ' . { 1/

J.., 2,., • ((Bo-8)

I bi

Euitting (B-8 intora -1)ie d lecigtemyils
on 2 aj+•

JoXon " 2

"I(N 0 Xon " J (Xn "i )o xn " bx b (-(( xo

/ ~ v b jj 1  
l

(x00 -N1 ~ . - J1 x 0  1 N xo i)~

? 2
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Figure B-2. One-Sided Boundary Coaxial to Coaxial Transition.
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bj /

function is:
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TM onn , . o 0 on  0 b, (xon ) Jo on.)
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Evaluating the integration yields:

2~ 
aj 1)S.O.I. (kj.j) 2 W~ 1 [0 *\ abl )

4 1___ _

{o( xon) Ij
J2 a

jJb
( 8i1\ N (x0 ) 1. 2N (& .

Jokxon ) I Xo _ ~ NO) No) IO (x 0  ) _ J (xn +)

ii-b 2 b (x)- j(o. bji

JXn0  - 'No (Xn 2XnJoNn 2Xon

10 * 0 () j ~+ .j N

' ( b+ \

N xn; 2. N bj+) JJ Non) - o* No (xon

is:

e (k ij) _ _ _ _ _ _ __.ro (B-14)

(a j)

Equation (B-1) becomes:

2x aj+1 2

S.0.I. (kiJ) rr y

0 bj+l r 2, 2w naj (B-15)
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Evaluating the integration yields:

s.o.1. (k-, )  _ _ (B-16)
/aj\

B.3. Circular to Coaxial Transition

The derivation below is valid for a smaller coaxial guide

totally embedded inside a larger circular waveguide. Such a transition

is depicted in Figure B-3.

With kj representing m-0 and arbitrary n, the vector mode

functions for a circular guide are given in (B-2) and (B-5) above.

Performing the integration over the annular aperture yields expressions

of S.O.I. For TE mode:

S.0.1. (kj, j ) 
=  

1 (a+ Xn on - n o "

Jo (xon) aj /
aj+ 1  (bj+ l \ /b+ b

J Xon- - . - )-Jo oxon J
\ a a a~j

(I bj4.l n ]
J2(on * -(B-17)

aj

Where xon is the nth zero of Jo0
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Figure B-3. One-Sided Boundary Circular to Coaxial Transition.
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For TH mode:

S.O.I. (kjgj) - ~j~ [__12_ * . &J+1 aj. 1
*~ -0J *o ( Xon *J, Non) a\' ) J/"

1\jb ,' r2J 2 X n •\ -- -j X on * " J o X on ••Xa j / j 1 I  / a I

J2 (Xon •)l (B-18)

Where xon is the nth zero of Jo.

All the above integrals are evaluated with the aid of the

)integrals of Bessel functions formula (4) on page 255 in Reference 2.
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Appendix C: Vector Mode Functions for TE. TM. and TEN Mode for

Rectangular Circular, and Coaxial Geometries

The transverse fields for the rectangular, circular, and coaxial

vaveguides are derived in Reference 3. The formulas for the TE, Th,

and TEN modes are given below. The origin of the coordinates have

been moved to the center of the guide from the lower left hand corner

for the rectangular waveguide modes. The vector mode functions are

represented by

e-.d
em -" TH mode vector function

emn =TE mode Ivector function

..TEH
o -- TEM mode vector function (coaxial

guide only)

For a rectangular waveguide, the cross section view is depicted

in Figure C-i.

y

b x

1 
0

Figure C-1. Cross Section View of a Rectangular Waveguide.
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The TM, and TE vector mode functions for a rectangular vaveguide

are given by

-- f~cosa7(x +) sin T- (y + I]

an m~ b

- - jnIr an a n~r hi

a 0 ~ 1 b coon 7 (x + ~) sin T(y + )2
2r a nI2 hi

5 csry~iJA Yol (C-2)

Where x0, yo are unit vectors along x and y -axis respectively

a, n 0, 1, 2, 3, *., mode a- n 0excluded

{m I if a

2 if.a 00

Figure C-2 illustrates the crons section viev of a circular vaveguide.

0

2a

Figure C-2. Cross Section View of a Circular Waveguide.
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The TM mode vector function for a circular waveguide is:

S-sin ro +

a r . *m SO (x .). [1 co l o) (C-3)

The TE mode vector function for a circular vaveguide is:

1T Mm x r) sin 1
e.r -n amt

.(x2 _ 2 * (x -Caos

[x:05si] 0* }(C-.4)

Where ro 1Po are unit vectors along r and *directions

m SO 0, 1., 2,6-
n is1 2, 3,

x - nth non-vanishing root of the ath -order Bessel

function Jm (xmn) -0

Xm nth non-vanishing root of the derivative of the mth-

order Bessel function J' (x'~ 4~

CM (Iif m-0

(2 if a 0

For a coaxial waveguide, the cross section view is shown in Figure

c-3.a
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Figure C-3. Cross Section View of a Coaxial Waveguide.
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The TM mode vector function for a coaxial vaveguide is:

_.TM qTF* I[! rx1  J(Xm ).xn-N(i.mJ(

2 ~ j 2L j (x~~ 1/2

im(C xmn)

mcs [ J (xtm *~N.(xtn) Nm Xmn b~)im (Xm

lainJJ Ob ~ 1/2

[-i I M. (C-5)

The TE mode vector function for a coaxial vaveguide is: 1

)F M Jm (xmn N' (xn) Nm (Xcmn. J,(Xn

e.m" - 1 m2

[] ~]. ~ J.(xm. Cxn -~~ C xin . xrnn1 x' 11 () :J~I (x' }/

Isini
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And the TEH mode vector function is: II
e -ro (C-7)

Where ro, o are unit vectors along r and 4 directions

m 0, 1, 2, 3,

n 1 1, 2, 3,

C a
b

xmn nth non-vanishing root of the mth - order Bessel-

Neumann combination. -

Xmn nth non-vanishing root of the derivative of the mth -

order Bessel-Neumann combination

I if m 0

2 if m O 

%

V'.
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LIST OF SYMBOLS

A(J, J+1) Common cross-sectional area at the Junction j
between regions j and J+1

aj, aj+i Outer radius of circular to coaxial waveguides
j and J+l

a (kj+ 1 , J+1) Weighting factor of each excited mode kj+j
region J+l

bj, bj+i Inner radius of coaxial waveguides j and j+1 J.

b (kj,j) Weighting factor of each reflected mode kjregion j

B (k,j) Backward mode k of E field magnitude defined
at input plane of region j

B' (kj) Backward mode k of E field magnitude defined
at output plane of region j (- B (k,j) . Gb
(kj))

Bs (k,j) Component of backward mode k of i field .0

magnitude defined at distance d (k,j) from
input plane of region j due to source terms P

4.

B' (kJ) Component of backward mode k of E field
s magnitude defined at input plane of region

j due to source terms - Bs (k,j) . Gbs (k,j)

C.O.I. (kj, kj, J) Cross-overlap integral of mode kj to mode kj
in the same region j left to junction J.
The integration is evaluated over the common

cross-sectional area of regions j and j+1

f "; (ki,j) - _ (kj,J) ds

A(j, J+L)

C.O.I. (kj+l, kj+j , J) Cross-overlaop integral of mode kj+I to mode I
kIa

kj+i in the same region J+1 right to junction
The integration is evaluated over the _

common cross-sectional area of regions j andJ+l "1

SJe (kj+i1 J+i) . e (kj+l 9 J+l) ds

A(J, J+1)
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LIST OF SYMBOLS (Continued)

cs (J) Cross-sectional area of region j

d (kJ) Distance of the location of excited source
mode k from input plane of region j

(k,j) Vector mode.function of mode k region j
transverse E field pattern

._TM
e (kjJ) TM mode vecor function of mode kj region j

transverse E field pattern

._TE
e (kj,j) TE mode veclor function of mode kj region j

transverse E field pattern

e (kj,j) TEM mode veltor f nction of mode kj region J
transverse and f fields pattern

Et (j), Et (J) Total input and output transverse electric
fields representation of guide j

Er (kj, j, r) The radial dependent part of the radial
electric field magnitude of mode kj in
region j

E* (kj, J, r) The radial dependent part of the azimuthal
electric field magnitude of mode kj in region
J

F (k,j) Forward mode k of E field magnitude defined
at input plane of region j

F' (k,j) Forward mode k of E field magnitude defined
at output plane of region j (- F (k,j)
Gf (k,j))

Fs (k,j) Component of forward mode k of E field
magnitude defined at distance d (k,j) from
the input plane of region j due to source
terms

Fs (k,j) Component of forward mode k of t field
magnitude defined at the output plane of
region j due to source terms = Fs (k,j)
Gfs (k,j)
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LIST OF SYMBOLS (Continued)

Gb (kj) Backward propagation term of mode k region j
- exp I+ y (k, j) -A (j )I

Gf (k,J) Forward propagation term of mode k region j
- exp If-y (k, j) - I (j )I

Gb. (k,j) Backward propagation term of source mode k
at distance d NkJ) from the Input plane of
region j
- exp (- y (k,j) -d (k~j)J

Gfs (k,j) Forward propagation term of source mode k at
distance d (k,j) from the input plane of
region j
-exp -v(k.,j) [I (9 J) - d (k~j)I1

i(k,j) Vector mode-,function of mode k region j
transverse H field pattern

Hit Q), lit (J) Total input and output transverse magnetic
fields representation of guide j

J Number of regions

j Index number of jth region

(kj) Index number of kth mode in region j

A Wj Length of region j

a Azimuthal mode number

n Radial mode number

N (J), N (J+I) Total number of modes considered in regions
j and J+1

0.1. (kj, kj+j, J) Overlap integral of mode kj in region j left
to junction .1 to mode k 1In region J+1 right
to junction J. The integration is evaluated
over the common cross-sectional area of
regions j and J+1

-ffe (kjo J) * 'j+lt J+1) ds

A(J, J..l)
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LIST OF SYMBOLS (Continued)

P (kj, kj+lt *) Integral of the product of the polarization
2ir 2ir

term f Pr (kj, kj+l, 1).d * -f

P p (kj, kj+j. ) d *~

Pr (kj, kj+j, *) Product of the polarization terms - p (kj, J, *)
p (kj+j, J'l, J )

P 4 (kj, kj+l, ) Product of the polarization terms - q (kj. J, )
q (kj+i, J+1, *)

p (kj. J, ) Polarizatibn term of the azimuthal dependent
part of mode kj in region j for radial electric
field component

q (kj. J, *) Polarization term of the azimuthal dependent
part of mode kj in region j for azimuthal
electric field component

VRI (k,j) Input voltage reflection coefficient of mode
k in region j (only valid for the first region)

VRO (k,j) Output voltage reflection coefficient of mode
k in region j (only valid for the last region)

Xclower, Xupper  Lower and upper limits of horizontal end
points

y(x) , y(x) Lower and upper limits of vertical end points
lower upper

Z (k, J) Mode k region j wave impedance

Ax x-shift between waveguide centers at the
junction

Ay y-shift between waveguide centers at the

junction

60 Angular rotation of the secondary axes
relative to main frame axes performed after
Ax and Ay

y (k, J) Propagation constant of mode k region j
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